	SGK GOVERNMENT DEGREE COLLEGE, VINUKONDA		
	DEPARTMENT OF COMPUTER SCIENCE		
	OPERATI	NG SYSTEM	
	II YEAR, IV	SEMESTER	
	LESSC	ON PLAN	
Hour	Торіс	Activity	Synopsis
			Introduce the concept of an
		Icebreaker:	operating system and its
		OS Trivia	fundamental role in computer
1	Introduction to Operating Systems	Quiz	systems.
			Discuss different types of
			operating systems, including
			single-user, multi-user, real-
2	Types of Operating Systems		time, and distributed operating
			Cover fundamental operating
			system concepts such as
			processes, threads, memory
3	Operating System Concepts		management, and file systems.
			provided by operating systems,
			including program execution,
			I/O operations, and error
4	Operating System Services		handling.
			Introduce system calls and their
			role as a bridge between user
			programs and the operating
5	Introduction to System Calls		system.
			Focus on system calls related to
			process control, covering
			process creation, termination,
6	System Call Types: Process Control		and scheduling.

			Discuss system calls associated
			with file management, including
			file creation, reading, writing,
7	System Call Types: File Management		and deletion.
			Explore system calls related to
		Dovice	device management including
		Interaction	device management, including
0	System Call Types, Davias Management	Challenge	and status in quiries
8	System Call Types: Device Management	Challenge	
			Cover system calls involved in
			obtaining system information,
0	System Call Types: Information		such as time, date, and system
9	Maintenance		status.
			facilitate communication
			between processes, like
			message passing and shared
10	System Call Types: Communication		memory.
	* **		Explain system calls related to
			security and protection,
	System Call Types: Security and		focusing on access control and
11	Protection		permissions.
			Recapitulate the concepts
			covered and provide an
			opportunity for students to ask
12	Recap and Q&A		questions and seek clarification.
			Introduce the concept of a
			process and its role in
			computing through a role play
13	Process Concept		activity.

		Process	Discuss the lifecycle stages of a
		Lifecycle	process: creation, execution,
14	The Process	Discussion	termination, and more.
			Visualize and explain different
			states a process transitions
15	Process State Diagram		through during its execution.
			Discuss the elements of a PCB
			and engage in creating a sample
16	Process Control Block		process control block.
			Simulate the concept of
			scheduling queues and
			demonstrate how processes
17	Scheduling Queues		move between them.
			Discuss and compare different
		Scheduler	schedulers (short-term, mid-
		Selection	term, long-term) and their
18	Schedulers	Activity	characteristics.
			Allow students to perform
			operations on processes, such as
			suspension, resumption, and
19	Operations on Processes		termination.
			Present scenarios requiring
			interprocess communication
20	Interprocess Communication		and discuss possible solutions.
			Explore challenges related to
			threading and discuss ways to
21	Threading Issues		mitigate them.
			Engage in a debate on the
			fundamental principles
22	Scheduling-Basic Concepts		underlying scheduling.
			Evaluate different scheduling
			criteria and discuss their pros
23	Scheduling Criteria		and cons.

			Simulate various scheduling
			algorithms to understand their
24	Scheduling Algorithms		impact on system performance.
			Introduce process
			synchronization by drawing
			parallels with real-life activities
25	Process Synchronization		that require coordination.
			Present the critical-section
			problem and analyze scenarios
26	The Critical-Section Problem		to understand its challenges.
			Examine hardware-based
			solutions for process
			synchronization in computer
27	Synchronization Hardware		systems.
			Implement semaphores and
			demonstrate their usage in
28	Semaphores		synchronizing processes.
			Engage in problem-solving
		Problem-	sessions for classic
		Solving	synchronization problems like
29	Classic Problems of Synchronization	Workshop	the Dining Philosophers.
			Discuss the concept of monitors
			and how they aid in process
30	Monitors		synchronization.
		Real-world	Explore real-world examples of
		Synchronizati	synchronization issues and their
31	Synchronization Examples	on Examples	solutions.
			Simulate race conditions and
			discuss the problems they can
32	Race Conditions		cause in a system.

-				
Γ				significance of mutual
				exclusion in concurrent
	33	Mutual Exclusion		programming.
Γ			Deadlock	Identify deadlocks and
			Identification	brainstorm solutions to mitigate
	34	Deadlocks	and Solutions	their occurrence.
				Discuss techniques to prevent
				starvation in concurrent systems
				and ensure fair resource
	35	Starvation		allocation.
Γ				Recap the learned concepts and
				assess understanding through a
				quiz on concurrency and
	36	Recap and Q&A		synchronization.
				Simulate the swapping of
				processes in and out of main
				memory to introduce the
	37	Swapping		concept of swapping.
ſ				
			Allocation	Compare different contiguous
			Strategy	memory allocation strategies
	38	Contiguous Memory Allocation	Comparison	and discuss their pros and cons.
				Engage in an activity to map
				logical addresses to physical
				addresses using the paging
	39	Paging		technique.
				Discuss the structure and design
				considerations of the page table
	40	Structure of the Page Table		in virtual memory systems.

			Analyze the segmentation
			memory management technique
			and its applications in computer
41	Segmentation		systems.
		Virtual vs	
		Physical	Compare and contrast virtual
		Memory	memory with physical memory,
42	Virtual Memory	Comparison	emphasizing its advantages.
			Simulate demand paging
			scenarios and discuss how it
43	Demand Paging		optimizes memory usage.
			Evaluate various page-
			replacement algorithms and
			discuss their efficiency in
44	Page-Replacement Algorithms		different scenarios.
			Explore strategies to prevent
			and handle thrashing in virtual
45	Thrashing		memory systems.
			Discuss how memory
			fragmentation occurs and
			explore potential solutions to
46	Memory Fragmentation		mitigate it.
			Understand memory protection
			mechanisms and how they
			secure memory in a multi-user
47	Memory Protection		environment.
			Recap the concepts and present
			a challenge to solve memory
48	Recap and Q&A		management-related problems.
		Understandin	Introduce the concept of a file
		g File	and various access methods for
49	File System Interface	Concepts	files in operating systems.

			Compare different access
			methods like sequential,
			random, and indexed access for
50	Access Methods		files.
			Discuss different directory
			structures and their
			implementations for efficient
51	Directory Structure		file organization.
			Engage in an exercise to
			demonstrate the mounting
			process of a file system in an
52	File System Mounting		operating system.
			Explore file sharing
		Sharing and	mechanisms and how protection
		Protection	is enforced to ensure data
53	File Sharing and Protection	Analysis	security.
			Discuss the architecture and
			design considerations in
54	File System Implementation		implementing a file system.
			Compare various file allocation
			methods like contiguous,
55	Allocation Methods		linked, and indexed allocation.
			Discuss methods to manage free
			space within a file system
56	Free Space Management		efficiently.
			Examine the components and
			organization of mass storage in
57	Mass-Storage Structure Overview		computer systems.
			Simulate disk scheduling
			algorithms and discuss their
58	Disk Scheduling		impact on disk performance.

		Discuss the role of device
		drivers and how they facilitate
		communication between
		hardware and the operating
59	Device Drivers	system.
		Recap the concepts and present
		a challenge to solve file system-
60	Recap and Q&A	related problems.